تشخیص بیماری مغزی از سیگنال های الکتروانسفالوگرام با استفاده از یادگیری مبتنی بر تئوری اطلاعات

پایان نامه
چکیده

مغز پیچیده ترین عضو بدن انسان است و مطالعه روی آن توجه دانشمندان را به خود جلب کرده است. در این میان، تشخیص و مقابله با بیماری های مغزی مسئله ای است که اهمیت زیادی دارد و محتاج تحلیل و بررسی رفتارهای مغز است. از میان بیماری های مغزی، صرع، جمعیت زیادی را در سرتاسر دنیا آزار می دهد و سیگنال های الکتروانسفالوگرام در حال حاضر بهترین راه برای مشاهده و بررسی رفتار مغز بیماران صرعی هستند. اما این سیگنال ها نامانا و غیر خطی هستند و در نتیجه، مطالعه ی آن ها به کارگیری تئوری اطلاعات را می طلبد. از سوی دیگر انجام یک عمل جراحی موفق بر روی بیماران مبتلا به صرع نیازمند تشخیص آن بخش از مغز است که حمله ی صرعی موضعی از آنجا شروع می شود. گام اول برای این تشخیص نیز تمیز سیگنال های سالم از سیگنال هایی است که حین حمله ی صرعی موضعی گرفته شده اند. در این پایان نامه روشی برای کلاس بندی سیگنال های سالم از سیگنال های مبتلا به حمله ی صرعی موضعی بر اساس یادگیری مبتنی بر تئوری اطلاعات ارائه شده است. در این روش استخراج ویژگی از سیگنال ها با استفاده از آنتروپی تقریبی انجام شده و کلاس بندی ویژگی های استخراج شده توسط ماشین بردار پشتیبان کمترین مربعات صورت گرفته است. تحلیل ها و نتایج نشان می دهند که کلاس بندی انجام شده برتری هایی را نسبت به تحقیقات موجود دارد و پتانسیلی برای تشخیص سیگنال های سالم و ناسالم است.

منابع مشابه

بررسی تشخیص بیماری دیابت بر اساس اطلاعات مستخرج از سیگنال ECG با استفاده از شبکه‌های عصبی مصنوعی

زمینه و هدف: بیماری دیابت یکی از شایع‌ترین بیماری‌های دنیا شناخته‌ شده است. یکی از مشکلات اساسی مربوط به این بیماری عدم ‌تشخیص به‌موقع و صحیح آن می‌باشد. هدف این پژوهش ارائه روش جدیدی برای تشخیص بیماری دیابت است و قصد دارد برای اولین بار ارتباط تصاویر ECG با تشخیص بیماری دیابت به کمک شبکه عصبی مصنوعی و الگوریتم‌های داده‌ کاوی را بررسی کند. روش بررسی: در این مطالعه 8 بیمار دیابتی و 64 فرد سالم ح...

متن کامل

تشخیص تومور مغزی با استفاده از ویژگی‌های خطی و غیرخطی سیگنال‌های الکتروانسفالوگرام

در پژوهش حاضر، سیگنال­های الکتروانسفالوگرام بیماران مبتلا به تومور مغزی و افراد سالم را برای مطالعة تغییرات ناشی از بروز تومور مغزی در سیگنال­های مغزی و در‌نهایت امکان­سنجی تشخیص این بیماری توسط سیگنال­های EEG، بررسی کرده‌ایم. برای این منظور از داده‌های EEG ثبت­شده از چهار کانال F3، F4، T3 و T4 برای پنج فرد مبتلا به تومور مغزی و چهار فرد سالم، استفاده...

متن کامل

تشخیص بیماری فلاتر دهلیزی با استفاده از سیگنال ecg مبتنی بر اطلاعات آماری مرتبه بالا

در این پایان نامه روشی نوین مبتنی بر اطلاعات آماری مرتبه بالا برای تشخیص بیماری فلاتر دهلیزی به کمک سیگنال ecg ارائه شده است. از الگوریتم پن-تامپکینز برای شناسایی قله های r و سپس با توجه به موقعیت قله r، قله های s ،q و t شناسایی شده اند. برای استخراج ویژگی های اطلاعات آماری مرتبه بالا از سیگنال tq که نشان دهنده ی فعالیت های دهلیزی می¬باشد و بصورت دنباله ای از قطعه های tq برای نمونه¬¬های 20 ثانی...

15 صفحه اول

شناسایی خودکار حالت‌های مختلف بیماری صرع از سیگنال EEG با استفاده از شبکه‌های یادگیری عمیق

استفاده از روشی هوشمند برای تشخیص خودکار مراحل مختلف صرعی در کاربردهای پزشکی، برای کاهش حجم کار پزشکان در تجزیه‌وتحلیل داده‌های صرع با بازرسی بصری، یکی از چالش‌های مهم در سال‌های اخیر محسوب می‌شود. یکی از مشکلات شناسایی خودکار مراحل مختلف صرعی، استخراج ویژگی‌های مطلوب است؛ به‌گونه‌ای که این ویژگی‌ها بتوانند بیشترین تمایز را بین مراحل مختلف صرعی ایجاد کنند. فرآیند یافتن ویژگی‌های مناسب، عموماً ام...

متن کامل

استخراج تغییرات دینامیک الگوی سیگنال الکتروانسفالوگرام در کودکان اُتیسمی با استفاده از قطع پوانکاره

چکیده: در اغلب فرایندهای روانی-زیستی، درجه بالایی از رفتارهای غیر خطی و دینامیکهای پیچیده، ثبت و گزارش شده اند که برخاسته از تعاملات میان تعداد بسیار زیادی از زیر سیستمها و فرایندها – با رفتارهای بعضاً ناشناخته – هستند. قطع پوآنکاره یکی از ابزارهای مهم است که در تحلیل این دسته از سیستمها و حتی کنترل سیستم­های غیرخطی از جمله سیستم­های آشوب­گونه و دارای عدم قطعیت استفاده می­شود. با وجود اینکه مدت ...

متن کامل

انتخاب ویژگی مبتنی بر تئوری اطلاعات برای انتخاب ژن‌های مؤثر در تشخیص نوع سرطان با استفاده از داده‌های ریزآرایه

انتخاب ویژگی یکی از فرایندهای پیش پردازش داده‌ها در مباحث مربوط به یادگیری ماشین و داده‌کاوی محسوب می‌شود که در برخی زمینه‌ها نظیر کار با داده‌های ریزآرایه در بیوانفورماتیک که با مشکل ابعاد بالای داده‌ها در مقابل تعداد کم نمونه‌ها مواجه است، از اهمیت ویژه‌ای برخوردار است. انتخاب ویژگی‌های (ژن‌های) موثر در تشخیص بیماری از داده‌های ریزآرایه نقش مهمی در تشخیص زودهنگام بیماری و راه‌های مواجهه با آن...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


نوع سند: پایان نامه

دانشگاه تربیت معلم - تهران - دانشکده برق و کامپیوتر

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023